Multiple Toxin-Antitoxin Systems in Mycobacterium tuberculosis

نویسندگان

  • Ambre Sala
  • Patricia Bordes
  • Pierre Genevaux
چکیده

The hallmark of Mycobacterium tuberculosis is its ability to persist for a long-term in host granulomas, in a non-replicating and drug-tolerant state, and later awaken to cause disease. To date, the cellular factors and the molecular mechanisms that mediate entry into the persistence phase are poorly understood. Remarkably, M. tuberculosis possesses a very high number of toxin-antitoxin (TA) systems in its chromosome, 79 in total, regrouping both well-known (68) and novel (11) families, with some of them being strongly induced in drug-tolerant persisters. In agreement with the capacity of stress-responsive TA systems to generate persisters in other bacteria, it has been proposed that activation of TA systems in M. tuberculosis could contribute to its pathogenesis. Herein, we review the current knowledge on the multiple TA families present in this bacterium, their mechanism, and their potential role in physiology and virulence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and functional studies of the Mycobacterium tuberculosis VapBC30 toxin-antitoxin system: implications for the design of novel antimicrobial peptides

Toxin-antitoxin (TA) systems play important roles in bacterial physiology, such as multidrug tolerance, biofilm formation, and arrest of cellular growth under stress conditions. To develop novel antimicrobial agents against tuberculosis, we focused on VapBC systems, which encompass more than half of TA systems in Mycobacterium tuberculosis. Here, we report that theMycobacterium tuberculosis Vap...

متن کامل

Functional Studies of Five Toxin-Antitoxin Modules in Mycobacterium tuberculosis H37Rv

Toxin-antitoxin (TA) systems, which consist of an intracellular toxin and its antidote (antitoxin), are encoded by ubiquitous genetic modules in prokaryotes. Commonly, the activity of a toxin is inhibited by its antitoxin under normal growth conditions. However, antitoxins are degraded in response to environmental stress, and toxins liberated from antitoxins consequently induce cell death or gr...

متن کامل

Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA

In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, ef...

متن کامل

Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. VapBC-5 from Mycobacterium tuberculosis.

In prokaryotes, cognate toxin-antitoxin pairs have long been known, but no three-dimensional structure has been available for any given complex from Mycobacterium tuberculosis. Here we report the crystal structure and activity of a member of the VapBC family of complexes from M. tuberculosis. The toxin VapC-5 is a compact, 150 residues, two domain alpha/beta protein. Bent around the toxin is th...

متن کامل

Comprehensive Functional Analysis of Mycobacterium tuberculosis Toxin-Antitoxin Systems: Implications for Pathogenesis, Stress Responses, and Evolution

Toxin-antitoxin (TA) systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive approach to identify and functionally charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014